
NASA TECHNICAL NOTE 

40 
N 
0 
P 
n 
z c 
< 
u9 
4 z 

AXISYMMETRIC VIBRATIONS OF 

CYLINDRICAL CONTAINERS . 

PARTIALLY LIQUID-FILLED 

.\ 

by RztdoVF. Glaser 

George C. Marshall Space Flight Center 
Huntsville, Ala. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1967 



TECH LIBRARY KAFB, NM 

I llllll11111 lllll11111 lllll lllll lllll1111111 
0130BOb 

NASA TN D-4026 

AXISYMMETRIC VIBRATIONS OF PARTIALLY 

LIQUID- FILLED CYLINDRICAL CONTAINERS 

By Rudolf F .  Glaser 

George C .  Marshall Space Flight Center 
Huntsville, Ala.  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
.. 

For sale by the Cleoringhouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTI price $3.00 

I 





TABLEOFCONTENTS 

Page 

SECTION I. 

SECTION 11. 

SECTION III. 

SECTION IV. 

SECTION V. 

SECTION VI. 

SECTION VII. 

REFERENCES 

........................ INTRODUCTION 1 

NUMERICAL RESULTS, COMPARISON WITH 
TEST RESULTS. 3 ........................ 

.................... Large Aluminum Tank 3 
Brass  Container I 1  
Steel Tube I 1  

........................ 
............................ 

EQUATIONS O F  MOTION AND BOUNDARY 
CONDITIONS. .......................... 14 

FREE VIBRATION ANALYSIS OF THE LIQUID- 
SHELL-FREE SURFACE SYSTEM. . . . . . . . . . . . .  16 

FREE VIBRATION ANALYSIS BASED ON THE 
ASSUMPTION OF ZERO ULLAGE PRESSURE. . . . .  24 

FREE VIBRATION ANALYSIS BASED ON THE 
ASSUMPTIONS OF ZERO ULLAGE PRESSURE 
AND LIQUID COMPRESSIBILITY ............. 26 

FORCED VIBRATIONS, COMPARISON WITH 
BLEICH'S RESULT . . . . . . . . . . . . . . . . . . . . . .  28 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

iii 

I 



LIST OF TABLES 

Table 

I. 

11. 

III. 

Figure 

i. 

2. 

3. . 

4. 

5. 

6. 

7. 

Title Page 

Large Aluminum Tank, Coupled and Uncoupled Frequencies 
10 at Different Liquid Levels . . . . . . . . . . . . . . . . . . . . . . . . .  

Brass Container, Experimental and Theoretical 
Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Steel Tube, Experimental and Theoretical Frequencies . . . . .  13 

LIST OF ILLUSTRATIONS 

Title Page 

Large Aluminum Tank, H/L = 0.5; First Liquid Surface 
Mode, f , = 0 . 4 4 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Large Aluminum Tank, H/L = 0.5; Second Liquid Surface 
Mode, f2  = 0.59 ................................ 5 

Large Aluminum Tank, H/L = 0.5; Third Liquid Surface 
Mode, f 3 = 0 . 7 0 .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

Large Aluminum Tank, H/L = 0.5; First Shell Deflection 
Mode, f = 7 . 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

I 

Large Aluminum Tank, H/L = 0 . 5 ;  Second Shell Deflection 
Mode, f = I 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

Mode, f = 2 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

System; Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

I1 

Large Aluminum Tank, H/L = 0.5; Third Shell Deflection 

I11 

Partially Liquid-Filled Cylindrical Container ; Coordinate 

iv 

....... 



I 

DEFINITION OF SYMBOLS 

Symbol Definition 

A excitation amplitude 

unknowns of the linear system of equations (30) ao,ai,a2, 9 an 
bi,b2,. ob, 

wave velocity 

series coefficients defined by equations (7 i) , (72) 
and (73) 

series coefficients defined by equations (69)  

series coefficients defined by equations (66) and (67) 

Young's modulus of elasticity 

natural frequency 

acceleration due to gravity 

shell thickness 

liquid height 

Bessel function of first kind and order 0 

Bessel function of first kind and order 1 

modified Bessel function of first kind and order 0 

modified Bessel function of first kind and order 1 

imaginary unit 

V 



DEFINITION OF SYMBOLS (Cont'd) 

Symbol 

r 

S 
+ 
V 

Z 

a! 
j 

P 

PO 

% 

Definition 

indices 

bulk modulus of elasticity 

constant defined by equation (24) 

constant defined by equation (38) 

constant defined by equation ( 6 5 )  

lengths of the container 

external pressure defined by equation (57) 

liquid pressure 

container radius 

cylindrical coordinate 

domain of the undisturbed liquid surface 

velocity vector of the liquid velocity field 

shell displacements in direction z ,  8 ,  and r 

dimensionless shell displacement defined by equation 
(12) 

shell displacement component of the kth mode 

cylindrical coordinate 

jth root of r) 

parameter of equation (74) 

root of equation (74) 

~ t h  imaginary root of equation (74) 

vi 

. ... . . .. . . .. . . . . , 



DEFINITION OF SYMBOLS (Cont'd) 

Symbol 

5 

5 
- 

e 

P 

u = a(k1R) 

u I ' = a( kI'R) 

crl = a(kf R) 

.e 

* 

Definition 

quantities defined by equations (75) 

Kronecker's symbol 

constants defined by equations (15) 

deviation from test values 

liquid surface elevation 

dimensionless surface elevation defined by 
equations ( 13) 

surface elevation component of the kth mode 

constant defined by equation (63 )  

cy1 indrical coordinate 

constant defined by equation ( 2 5 )  

defined by equation ( 15) 

liquid density 

shell density 

function defined by equations (28)  

domain of the wetted shell wall 

function defined by equations (28) 

v ii 



Symbol 

w 

DEFINlTION OF SYMBOLS (Concluded) 

Definition 

velocity potential of the liquid 

dimensionless potential defined by equation (ii) 

potential of the kth eigensolution 

parameter 

jth (circular) eigenfrequency 

circular excitation frequency 

viii 



AX I SYMMETR I C V I BRAT IONS OF PART IALLY 
LlQU I D-FI L E D  CYLI NDR I CAL CONTA I NERS 

SECTION 1. INTRODUCTION 

The longitudinal vibration of launch vehicles represents a significant 
problem. During ignition, lift-off or cutoff, longitudinal vibrations occur as 
transients and may cause considerable dynamic loads. However, longitudinal 
vibrations can also be excited during power flight as has been realized in the 
case of the Titan missile. Coupling of vehicle structure oscillations with pres-  
sure  oscillations of the propellant system generated thrust vibrations which 
intensified the original structure vibrations. This created unstable oscillations 
of the entire system. So, attention must be paid to the dynamic behavior of 
launch vehicles in the axial direction. In particular the dynamic behavior of the 
liquid-filled flexible shell container represents a significant problem. The liq- 
uid propellant inside the tanks constitutes a high percentage of the vehicle 
masses.  These masses supported by the elastic container wal ls  act  like spring 
mass systems and- -coupled--may generate the fundamental frequencies of the 
entire system. Hence, without a clear  understanding of the liquid shell inter- 
action, no exact vibration analysis of the vehicle can be performed. On the 
other hand, the pressure waves generated by this interaction may be adverse 
to propellant flow, pump performance and finally, a s  already mentioned, to the 
engine performance. 
shell containers is presently considered a problem o€ particular interest. This 
interest stimulated considerable scientific work which is cited in reference form 
[I] and specifically in other publications [2-71. 

Thus, the vibration analysis of partially liquid-filled 

>:< 

Although the behavior of liquid propellant in flexible containers has been 
regarded important and considerable theoretical work already has been accom- 
plished, various problems a r e  still left in this area and should be investigated. 
To discuss,  at least, some of these problems, analytical methods have been 
used in this report based upon a very simple physical model, which is a flexible 
cylindrical container with a flat rigid bottom. 
be rather unrealistic and academic it provides a good understanding of the vibra- 
tion mechanism and is convenient for computational purposes. The analyses of 
this paper are restricted to misymmetric vibrations because of their impor- 
tance for space vehicle systems. Furthermore, the analyses are based on 
membrane theory, since--as it is well known--axial bending of the cylinder wall 
affects only slightly the fundamental frequencies of the system. 

Although this model appears to 

Comparison of 

aK 
Kana, D. D. ; Glaser,  R. F.; Eulitz, W. R. ;  and Abramson, H. N.: Longitu- 
dinal Vibration of Spring Supported Cylindrical Membrane Shells Containing 
Liquid. ( in  preparation) 



experimental and theoretical data as shown in Section I1 confirms this behavior. 
See also Kana, Glaser , Eulitz and Abramson (see footnote on page I) and Kana 
[51. 

Now the special problems to  be considered in this report will be dis- 
cussed. First of all, emphasis is placed on the question of whether or  not the 
effect of the liquid surface oscillations is significant. In other words, is it 
necessary to consider the combined liquid-shell-surface wave system o r  only 
the simpler liquid-shell system assuming zero pressure  at the free  surface? 
The modal analysis--applied for both cases (Sections III through VI) --shows 
that the amount of coupling among the "shell deflection modes" and the "liquid 
surface modes" is small. 
example of the Saturn V vehicle (Section 11). In Hwang 173 the same behavior 
is shown for the liquid-filled hemispherical shell. 
based on zero ullage pressure can be considered adequate for predicting natu- 
ral frequencies and modes. This is also confirmed by the comparison of theo- 
retical and experimental results in Section II. 
value problems , however, the coupled analysis represents a n  interesting example 
of a problem having solutions which consist of pairs of eigenfunctions. 
ingly the orthogonality relations ( Section IV) appear somewhat unusual. 

This behavior is demonstrated by the numerical 

Consequently the analysis 

In view of the theory of eigen- 

Accord- 

Sections VI and VI1 discuss the influence of liquid compressibility. AI- 
though it is recognized that for large flexible containers the compressibility 
can be neglected it is of some interest to h o w  the conditions under which com- 
pressibility becomes effective. This problem is closely related to the theory of 
Waterhammer. The third table in Section I1 considers experimental and theo- 
retical values of the first frequency of a liquid-filled flexible steel tube at dif- 
ferent filling heights. The theoretical values are calculated for compressible 
and incompressible liquids. In this way the effect of liquid compressibility is 
realized. 
excitation of the container. It is shown that the results of this analysis a r e  in 
agreement with that of Bleich [ 21. 

Section VI1 contains a forced vibration analysis assuming longitudinal 

The above mentioned experiments and many others have been performed 
by SWRI, San Antonio, Texas. 
cy1 indrical tanks of different materials,  unstiffened and stiffened by rings , 
having flat rigid bottoms and also flexible flat and elliptical bottoms. Emphasis 
was placed on the axisymmetric vibrations because of their importance to  launch 
vehicle vibrations. The experimental outcomes agree with those of Palmer and 
Asher [6]  , i.e. , misymmetric modes are very difficult to determine as they 
are largely obscured by the strong presence of nonaxisymmetric response. 

The experiments have been carried out using 
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Furthermore the experimental data show that the nonaxisymmetric response 
originates from dynamic instability effects of the tank wall. A linear axisym- 
metric response has been obtained only if considerably stiff containers as tube 
like shells, b rass  shells,and ring stiffened shells of other materials have been 
utilized. In this note, the experimental data for the unstiffened steel and brass  
shells having flat rigid bottoms are compared with the analytical resu l t  using 
the membrane model discussed above. 

SECTION 1 1 .  NUMERICAL RESULTS, COMPARISON 
WITH TEST RESULTS 

The analytical methods applied in this section are programmed on IBM 
709-4. However, some of the numerical results are obtained using approxima- 
tion formula as shown in Sections V and VI. 

Large Aluminum Tank 

The analysis applied is that of Section IV based on the assumption of 

The kth normal mode consists - of a 
coupled liquid-shell-surface oscillations. It results i n  two sets of eigensolu- 
tions with separated frequency ranges. 
pair of functions: shell deformation k k (  z) and liquid surface elevation Ck( r )  . 
The frequencies of the lower range correspond to modes with predominant s u r -  
face elevation while the higher frequencies belong to  "shell deformation modes. '' 
This behavior is demonstrated by Figures 1 through 6 which show the three low- 
est modes (ck ,  &) of each kind for the half-full tank. The order of magnitude 
of Ck and % proves the weak intercoupling between shell and surface modes. 

The coupled frequencies of the full ,  three-quarter-full, half-full, 
quarter-full tank up to the seventh are compiled in Table I. To show once 
more the low coupling effect both kinds of frequencies are also determined 
without consideration of coupling and presented in Table I. The uncoupled 
liquid surface frequencies are  obtained, assuming the tank is rigid, by the well 
b o w n  formula [ 81. 

3 
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TABLE I. LARGE ALUMINUM TANK, COUPLED AND UNCOUPLED 
FREQUENCIES AT DIFFERENT LIQUID LEVELS 

R = 198.0 in. (502.92 em) h = 0.22 in. (0.5588 em) 
L = 488.5 in. ( 1240.79 em) E = 1. 03 x I O 7  lb/in? (7101.85 x l o 7  N/m2) 
p = 9.359 x lb  sec2/in! (0.001 X l o 4  kg/m3) 
p = 2.69 x lb  sec2/in! (0.288 X l o 4  kg/m3> 

S 

H/L 
qumber 
If mode 

I. 0 

Coupled 

3.90 

10.1 

14. 3 

17.5 

20.1 

22.4 

24.5 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

~ 

Un - 
:ouplec 

3.90 

10.1 

14. 3 

17. 5 

20. I 

22.4 

24. 5 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

0. 

Coupled 

5.11 

12.4 

17. 0 

20.5 

23. 5 

26. 1 

28.4 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

5 _ _  
Un- 

:oupled 

5.11 

12.4 

17. 0 

._ 

80.5 

23. 5 

26. 0 

28.4 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

C 

Zoupled 

7.33 

16.0 

21. 3 

25.4 

28.9 

32. 0 

34. 8 
~- 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

50 
Un- 

3ouplei 

7.33 

16.0 

21.3 

25.4 

28.9 

32.0 

34.7 

0.435 

0.589 

0.709 

0.811 

0.902 

0.984 

1. 06 

Couplet 

12.4 

23.5 

30.5 

36.0 

40.6 

44.6 

48.2 

0.431 

0.589 

0.709 

0.811 

0.902 

0.984 

1. 06 

25 
Un- 

: ou pled 

12.4 

23.5 

30.5 

36.0 

40.7 

44.7 

48.3 

0.431 

0.589 

0.709 

0.811 

0.902 

0.984 

1.06 

io 

I 



i =  1, 2, 3,  ... 

The uncoupled liquid-shell frequencies are determined using the simple 
analysis of Section V. 
cies of Table I are given by three digitals. However, only in the low frequency 
range can one observe some slight effects. 

For the coupling effect to become visible at all, the frequen- 

Finally, it should be mentioned that application of equation (54) shows 
that for the case under consideration the influence of the liquid compressibility 
is negligibly small. 

Brass Conta iner  

Table II contains data a s  well a s  experimental and theoretical results., 
First and second frequencies at different filling heights a r e  presented. Since 
application of equation (54) shows that the liquid compressibility can be neg- 
lected, the analysis of Section V has been applied. According to the condition 
(44) the first frequency for the liquid levels H>4 in. has been calculated by f i rs t  
order approximation using the first  term of equation (43). 

Steel Tube 

Data a s  well a s  experimental and theoretical results a r e  compiled in 
Table III. The matter for discussion is the first frequency at different liquid 
levels. Since condition (44) is satisfied for all levels a first-order approxi- 
mation for calculation of the frequencies can be used [equation (43) 1. On the 
other hand, application of the condition (55) ,  

= 0.32 h E  
2R K 
- -  

shows that for the case in hand the liquid compressibility cannot be neglected. 
However, Table III presents both kinds of frequencies, assuming the liquid 



TABLE II. BRASS CONTAINER, EXPERIMENTAL 
AND THEORETICAL FREQUENCIES 

R = 4 . 5  in. (11.43 cm) h = 0.005 in. (0.0127 cm) 
L = 11.2 in. (28.448 cm) 
p = 9.359 x 
p = 79.55 x lb sec2/in! (0.851 x l o 4  kg/m3) 

E = 15.3 x I O 6  lb/in? ( 105 483.5 x I O 6  N/m2) 
lb  sec2/in! (0.001 x l o 4  .kg/m3) 

S 

H 
in. (cm) 

I O .  9 (27.686) 

I O .  5 (26.670) 

9.5 (24. 13) 

8.5 (21.59) 

7 .5  (19.05) 

6.5 (16. 51) 

5.5 (13. g’ij 

4.5 (11.43) 

3.5 (8.89) 

2.5 (6.35) 

1.5 (3.81j 

Test 

2 17 

226 

250 

276 

309 

352 

404 

47 8 

576 

7 39 

996 

fi (Hz) 

Analysis 

213.0 

220.6 

242.4 

268.8 

301.4 

342.3 

395.3 

465.7 

563.4 

707.8 

955.5 

A (70) 

1.8 

2.4 

3.0 

2.6 

2.5 

2. 8 

2.2 

2.6 

2.2 

4. 2 

4. 1 

Test 

566 

586 

627 

678 

736 

811 

f 2  (Hz) 
- 
Analysis 

548.3 

563.4 

604.8 

652.5 

707.8 

773.5 

A ( 70) 

3. I 

3.9 

3.5 

3.8 

3.8 

4.5 

12 
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H 
in. (cm) 

16 (40.64) 

15 (38. 1) 

14 (35.56) 

13 (33.02) 

1 2  (30.48) 

11 (27.94) 

10 (25.4) 

9 (22.86) 

8 (20.32) 

7 (17.78) 

6 (15.24) 

5 (12.7) 

4 (10.16) 

3 (7.62) 
~~ 

TABLE 111. STEEL TUBE, EXPERIMENTAL 
AND THEORETICAL FREQUENCIES 

R = 1.5 in. (3.81 cm)  
L = 16.0 in. (40.64 cm) 
h = 0.01 in. (0.0254 cm) 
E = 29 x lo6  lb/in: (199 955 x I O 6  N/m2) 
p = 9.359 x 
c = 0.563 x lo5 in./’sec (1.43 x io5 cm/sec) 

lb sec2/in! (0.100 x l o 4  kg/rn3) 

Exper _ _  imc 

f, ( H z )  
~~ - __ 

45 1 

48 1 

518 

553 

594 

652 

717 

793 

894 

1003 

1176 

1373 

1655 

2133 

Analysis 
Liquid Liquid 

Assumed Compressible 
~ 

f ,  ( H z )  
- 

436 

46 5 

49 8 

537 

58 1 

634 

698 

775 

872 

997 

1163 

1396 

1744 

2326 

Deviation from 
Experiment 

(%) 

3. 3 

3. 3 

3.9 

2.9 

2.2 

2.8 

2.4 

2.3 

2.5 

0.6 

1. 2 

1. 7 

5 .4  

9.0 

As sum Sd Incompressible 

502 

5 36 

574 

618 

67 0 

730 

803 

893 

1004 

1148 

1339 

1607 

2009 

2678 

Deviation from 
Experiment 

(74 

11. 3 

11.4 

10.8 

11.8 

12.8 

12.0 

12.0 

12.6 

12.3 

14.5 

13.9 

17.0 

21.4 

25.6 
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compressible and also incompressible. In this way the significance of the com- 
pressibility for the case in question is demonstrated once more. 

SECTION I 11.  EQUATIONS OFMOTION AND BOUNDARY CONDITIONS 

The cylindrical shell is referred to  a cylindrical system of coordinates 
r ,  8, z (Fig.  7). The shell displacements in directions r ,  8, z shall be w,  v, 
u.  The surface elevation of the liquid is denoted by g . The following simplify- 
ing assumptions will be made: 

i. The analysis is restricted to  the axisymmetric case ( v  = 0) . 

2. The components of the shell inertial forces in direction u will be 
neglected. 

3. At the top, the shell is free and hence no axial membrane 
forces a re  acting. 

4. The liquid is considered inviscous and irrotational. 

Under these assumptions the equation governing the motion of the shell 
wall [9] is given by 

T L 

1 H I 
I' 

- w  ( 2 )  

= r  

FIGURE 7.  PARTIALLY LIQUID-FILLED CYLINDRICAL CONTAINER; 
COORDINATE SYSTEM; DISPLACEMENTS 
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while the liquid velocity field can be represented by a gradient field 

where the potential 40 is a solution of 

V 2 q ( r , z , t )  = o 

or 

depending on whether the liquid is assumed to be incompressible or compress- 
ible [ 2 , 3 ,  I O ] .  

Neglecting static and second-order terms the pressure equation is given 
by 

(4) w p ( r , z , t )  - P O = - P X  

where po is an external pressure independent from the potential cp. In the case 
of free vibrations po can be assumed zero. 

The boundary conditions to be satisfied by cp a r e  

The free surface condition depends on whether or not the surface eleva- 
tion of the liquid is taken into account. In the first case  the pressure on the 
undisturbed liquid surface equals- -apart from a constant--the "weight" of the 
surface wave. 
zero. Hence 

In the second case the pressure is constant and can be assumed 

15 



If the surface elevation 5 is taken into account an additional condition-- 
equivalent to equation (5)  --must be satisfied 

= a g  
az at 

(9) 

SECTION IV. FREE VIBRATION ANALYSIS OF THE 
LIQUID-SHELL-FREE SURFACE SYSTEM 

The vibrations of this system a r e  governed by equations ( I) ( 2 )  , (4) 
through (7) and ( 9 ) .  Using matrix notations these equations can be written as 
follows : 

Assuming 

16 



q ( r , z , t )  = H ~ W  T ( r , z )  COS wt 

w ( z , t )  = H w(z)  sin w t  

equations (13 )  reduce to 

where 

Equations (14) through (18) represent the eigenvalue problem in hand. 
The eigensolutions consist of the eigenvalues and the corresponding pairs of 
eigenfunctions : 

which can be represented by the normal derivatives of a potential 

17 



in accordance with equations ( 16) through (18). On the other hand the potential 
F(k) can be derived from the eigensolution ( 19) in accordance with the second 
boundary value problem of the potential theory. 

In the sequel, the orthogonality of the eigensolutions may be discussed. 
Let 

w 2 *  m '  w 2 -  n '  [ :] 
be two different eigensolutions. Then it follows from equation (14) in the usual 
way 

where 

2: r = R ;  0 ' 8 5 2 ~ ;  O ' z s H ;  d s l = R d d d z  

S: z = H ;  0 5  8 5 2 ~ ;  O ' r  'R; ds2 = r d r d d  

represents wetted shell wall and the free undisturbed liquid surface, respectively. 
Now, application of the well known Greens theorem shows that the two sums with- 
in the brackets a r e  equal, hence the orthogonality relations can be written as: 

Solving the eigenvalue problem will be performed using Galerkin's method. 
In doing so the potential will be approximated by 

1 8  



n Io(kQr) cos kQz n cosh K~ 2 3 0  ( K 1  r) 

bQ cosh K~ H J o  ( K~ R) ‘(ryz) = aQ Io(kIR) cos kQH + 1=i Q=i 

with 

I n  
1 H  

k = -  

Q = 1 , 2 y . . .  . 

As it can be seen by substitution the ser ies  (23) satisfies Laplace’s 
equation ( 17) and the boundary condition (18). 
side of equation (23) in succession represent the velocity potentials of: 

The three terms of the right 

i. The liquid-filled container with flexible wall ,  rigid flat bottom, 
and rigid flat top on the undisturbed surface. 

2. The liquid-filled container with rigid wall and bottom and free 
liquid surface. 

3. The liquid-filled container with rigid bottom, free  surface, and 
a ring-like flexibility of the wall. 
flow through the container wall and the undisturbed liquid surface. 

This potential governs the mean 

From equations (23) and (16) it follows 

2 

+a0 [:-- 
19 
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where 

r I r) 
a(r)  = ; T ( Z )  = z  tanh z 

IO( r) 

a =a(k8R)  ; T ~ = T ( K  H) ; P = i ,  2, 3,  ... P 1 

From equation (27) the pairs of coordinate functions of the Galerkin 
approach may be recognized as 

j = 1 , 2 , 3 , .  . . n  . 
To apply Galerkin’s method equations (26) and (27) must be substituted 

into equation ( 14). Now successive scalar (left) multiplication of equation ( 14) 
with the above pairs of functions and integration over wetted shell wall and liquid 
surface as defined by the domains (21)  yields a linear homogeneous system of 
equations in the unknowns: 

ai; a2; as;. . . a  - bi; bz; b3;. . . bn; a0 . (29)  n’ 

In doing so,  some of the integrations to  be performed are the following: 

H 
cos k.z cos k.z dsl  = RT s c o s  k.z cos k.z dz = R7rH 6.. 

1 J 1 J 1J 0 c 

20 



( Orthogonal it y conditions ) 

cos k.z cosh K ~ Z  20 .  7 
1 dsi = j$ 4 RTH J “j cos k.H cosh K ~ H  z= J J 

k! + uI 

In this way the problem will be reduced to the following symmetrical 
matrix eigenvalue problem 

21 
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w2 i 
w 2 6  sh 

i 0 .  . . 0 ' 1  0 ui" . . . 0 ;  
I 

I 
0 1  I * 

u2" 
I .  
I 
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where 

Let 

a = K.R j = i , 2 ’ . .  . 
j~ 

be the eigensolution of the matrix eigenvalue problem (30 ) .  Then from equa- 
tions (23)  and (27) the eigensolution (19) (20) follows as 

23 
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The kth natural frequency may be obtained from the eigenvalue (31) as 

From equation (30) the orthogonality conditions of the eigenvectors (29) may 
be obtained easily. 

SECTION V. FREE VIBRATION ANALYSIS BASED ON THE 
ASSUMPTION OF ZERO ULLAGE PRESSURE 

The vibration is determined by equations (I) (2)  (4) through (6) and 
( 12) and (15) these equations can be written as: (8) . Using the notation (11) 

F ( r , H )  = 0 (35) 

Equations (32) through (36) represent the eigenvalue problem in hand. 
Solutions of equation (33) satisfying the boundary conditions (35) and (36) a r e  
given by 

F( r , z )  = Io( kl'r) cos kl'z (37) 

1 = 1 , 2 ,  ... , ' (2.t - 1)7r 
2H ka = 

24 



From equations (32) (34) (37) the eigenvalues may be concluded a s  
1 

2 ?I 
w; = w s h  i + 6 u i  

1 

u = o(kpR) I 

(39) 

where u is defined by equations (28). 

From equations (34) and (37) the correspondent mode follows as 

From equations (28) and (40) one recognizes 

Hence equation (39) shows that the empty shell frequency Wsh represents the 
upper limit of the frequencies wI . 

In general the shell wall mass (as represented by p Sh ) is small. Hence, 
for the lowest frequencies, 

6a; << i 

and can therefore be neglected against I. In that case equation (39) reduces to 

Using the power ser ies  expansions of Io( r) and It( r) the first terms of 
the ser ies  expansion of u( r )  can easily be found. One obtains 
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Although a( r) is defined for  all values of r the convergence of the ser ies  (42) is 
sure  if r is at least smaller than or equal to 2. 

From equations (41) and (42) it follows: 

Formula (43) can be used for calculation of o if the shell wall inertia 
is negligible (low frequency range) and if k i R  is suf fe iciently smaller as two. 
If, in addition 

a first-order approximation can be used. 

SECTION VI. FREE VIBRATION ANALYSIS BASED ON THE 
ASSUMPTIONS OF ZERO ULLAGE PRESSURE 

AND LIQUID COMPRESS I B  IL lTY  

Equations of motion and boundary conditions are given by equations ( I )  , 
(3)  , (4) through ( 6 )  and (8 ) .  Using the notations (11) , (12) and (15) these 
equations can be represented as 

- w ( z )  =% LF(z )  + E  (P(R,z) 

s h  w 

q ( r , H )  = O  

( 45) 
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Solutions of equations (46) which satisfy the boundary conditions (48)  
and (49) are given by 

I0(r,/ki2 - w j / c 2  ) cos ki z 1 = 1,2, ..., 

where k i  is given by equation ( 3 8 ) .  This can be proved by substitution. 

The additional equations (45) and (47) can be satisfied by selecting 

6 u (R Jkd2 - a j / c2  ) 
~ - -  . . 

n -  

1 + 6  w '  sh 

where u is defined by equation ( 2 8 ) .  

A s  in Section V it can be conc 
it may be 

LC XI that for t 

6 ti(RJkg - $/c2 ) << 

le lowest frequenc 

1 .  

Hence, in that case equation (51) can be simplified for 

Now, if equation (44) is valid , that means low frequency range of cases with 
large H (for instance, liquid-filled pipes) then, in accordance with the series 
expansion (42)  , one may replace equation (51) by the first-order approxi- 
mation 
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Elimination of uI leads to 

where K = pc2 represents the bulk modulus of elasticity of the liquid and 

the pressure wave velocity of the liquid within the elastic container [ I 21  . 

Comparison of equations (39)  and (57) shows that the compressibility 
of the liquid can be neglected if 

Application of this inequality to the cases covered by condition (44) means, in 
accordance with equation (52) , 

h E  
2R K 

- << I - 

SECTION V I  1. FORCED VIBRATIONS, COMPARISON 
WITH BLEICH'S RESULT 

In the following a forced vibration analysis of partially liquid-filled 
cylindrical shell containers with flat rigid bottoms will be  presented. The 
liquid is assumed to be compressible, the ullage pressure shall be zero. 

(55)  

Let 
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be the excitation of the container. If the body-fixed coordinate system of Figure 7 
is used, the external pressure field created by the excitation (56) is given by 

p o = p ( H - z ) X  * (57) 

The equations of motion and boundary conditions are given by equations 
(I) , (3) through ( 6 )  and (8) with po given by equation (57). 
tions (11) and (12) these equations can be written as: 

Using the nota- 

? ( r , H )  = O  

where 

A q = -  
H 

and 6 ,  1-1, w are defined by equation (15). s h  

Solutions of equation (59) which satisfy the conditions (61) and (62) can 
be represented by 

Io(g!r) cos k!z j = 1 , 2 , .  . . 
J J 
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where 

I 
and k. is given by equation ( 3 8 ) .  Proof can be made by substitution. 

J 

To satisfy the remaining equations (58)  and (60) the following series 
expansion in te rms  of the function set (64)  

03 * I 
;P"(r,z) = q cJf Io(k. r) cos k.z 

J 3 J j=l  

will be used. 
integration over z from zero to H, taking into account the orthogonality 
c ondit ions 

Substitution of this expression into equation (58) and subsequent 

H ;cos kiz cos k.z dz =- 6.. i , j  = 1 , 2  ,... , 
0 J 2 1J 

yields 

Y (67) 
* 2 Q2 I I c =- 
1 6 7  ' 522 1 + GUT 

- 1  sh ( kI H) kp*R Ii(  k:R) 
2 :k 

s h  6crI w 

where : 

cr"= cr(k:R) 1 = I y 2 , .  .. I 

and cr is defined by equations (28) .  

Equations ( 6 5 ) ,  (67) and (68)  show that resonance will occur if 

52 = w l  B = l , 2 , 3 y . . .  , 

where w is defined by equation ( 5 1 ) .  I 

From equation (37) , (64)  and (65)  one concludes that the liquid com- 
pressibility can be neglected if 
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In that case equations (66) and (67) reduce to: 

00 

$ ( r  , z )  = q cP1 Io(k 'r )  cos k i z  P P =I 

where wI is given by equation ( 3 9 ) .  

The total pressure as indicated between the brackets of the right side of 
equation (58) follows from equation (66) as 

'1 
00 

+ c i  Io(kFr) cos k z . I 
I 

H. H. Bleich [ 2 ]  derives the total pressure applying another method of 
solution. 
liquid surface at rest. In the following,Bleich's solution will be compared 
with that given above. To facilitate the comparison, Bleich's solution will 
be referred to a coordinate system having its origin at the center of the contain- 
er bottom at rest. Also sign rules and some notations of the paper in hand will 
be utilized. 

He u s e s  a space-fixed system of coordinates with the origin at the 

Bleich's potential is then given by 
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and 

po is the only real root of 

where p ,  6, wsh and a a r e  defined by equations ( 15) and ( 2 8 ) .  

represent the imaginary roots of equation ( 7 4 ) .  
following relations exist: 

Between the p and the P the 

2 Q2 2 pa” =P,2 - 2 I = 1 , 2 , . . .  - (75)  
Q2 F; = P o  +c 

Equation (72)  shows that the denominator of the right side vanishes if 

or 

Substitution of this expression into equation (74)  and comparison with equation 
(51)  shows that in this case  

and this represents resonance. 
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To prove that the expressions (70) and (71) represent one and the same 
quantity,one first assumes the equality of both expressions then multiplies both 
series by 

r IO (&r) cos k:z 
j = 1,2,3,. . . 

or  

respectively, and integration over the domains 

O S z S H ;  O S r s R ,  

taking into account the orthogonality conditions of the trigonometric and Bessel 
functions, results in equations (72) and (73) . 

George C. Marshall  Space Flight Center 

Huntsville, Alabama, March 2 I, 1967 
National Aeronautics and Space Administration 

10 3 - I I - 0 5 - 0 0-6 2 
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